Data Science

Syllabus Of Data Science

Syllabus

  • Python Programming Introduction
  •  Syntax, Comments, Variable, Data Types
  •  Python String
  • Python Operators
  • List /Tuple /Sets /Dictionaries
  • If else/For Loop
  • Functions
  • Python Numpy
  • Python Pandas
  • Introduction to Analytics & Data Science
  • Introduction to Data Analytics
  • Introduction to Business Analytics
  • Understanding Business Applications
  • Business Intelligence (BI) and BI Tools 
  • Business Understanding and Acumen
  • Problem Statement Solving Techniques
  • Research Methodology
  • Data types and Data Models
  • Types of Data
    • Structured Data
    • Semi-structured Data
    • Unstructured Data
  • Type of Data Analytics
    • Descriptive Analytics
    • Diagnostic Analytics
    • Predictive Analytics
    • Prescriptive Analytics
    • Cognitive Analytics
  • Type of Business Analytics
  • Evolution of Analytics
  • Data Science Components
  • Data Scientist Skill Set
  • Fundamentals of Data Science
  • Introduction to Google Colab/Kaggle workbooks

 

  • Data Structures & Algorithms
  • Exploratory Data Analysis
  • Data Manipulation
  • Data Wrangling
  • Univariate Data Analysis
  • Bivariate Data Analysis
  • Multivariate Data Analysis
  • Data Mining
  • Applied Data Analytics
  • Introduction to Basic Statistics
  • Descriptive Statistics
  • Probability and Probability Distribution
  • Inferential Statistics
  • Hypothesis Testing
  • Introduction to Sampling
  • Statistical Modeling
  • Types of Distributions
  • Categorical Data Analysis
  • Statistical Quality Control
  • Analytical Tools for Statistics
  • Stochastic Processes and Models
  • Linear Regression Models
  • Nonparametric & Nonlinear Regression Models
  • Introduction to Mathematical Foundations
  • Numerical Analysis
  • Calculus
  • Differentiation
  • Computational Mathematics
  • Linear Algebra
  • Vector and Matrices
  • Programming language: Python, R
  • Python for Data Science
  • Python Packages and Libraries
  • Query Language: SQL
  • Database Management
  • Types of Machine Learning
  • Supervised Learning
    • Regression Models
    • Linear Regression
    • Logistic Regression
    • Classification Models
    • Model Evaluation Metrics
    • Decision Tree
    • Random Forest
    • Naive Bayes
    • K-Nearest Neighbors
    • Support Vector Machines
    • Ensemble Techniques (Random Forest, Bagging, Boosting)
  • Unsupervised Learning
    • Segmentation using Clustering
    • K-means Clustering
    • Agglomerative Clustering
    • Hierarchical Clustering
    • Spectral Clustering (DBSCAN)
  • Dimensionality Reduction
    • Principal Component Analysis
    • Singular Value Decomposition
  • Market Basket Analysis
    • Apriori algorithm
    • Association Rule Mining
  • Reinforcement Learning
  • Forecasting
  • Regularization
  • Bias-Variance Tradeoff
  • Feature Learning
  • Techniques to improve the Machine Learning model
  • Model Deployment
  • Basics of Neural Networks
    • Perceptrons
    • Multi-Layer Perceptron
    • Forward and Backward Propagation
    • Gradient Descent Algorithm
    • Loss Function
    • Activation Functions
    • Optimizers
  • Supervised deep learning
    • Artificial Neural Network (ANN)
    • Perceptron (Single and Multi-Layer)
    • Convolution Neural Network (CNN)
    • Recurrent Neural Network (RNN)
  • Variations of RNN:
    • Long-Short Term Memory (LSTM)
    • Gated Recurrent Unit (GRU)
  • Unsupervised deep learning 
    • Autoencoders
    • Deep Belief Networks
    • Boltzmann Machine
    • Restricted Boltzmann Machine
    • Generative adversarial networks (GANs)
  • Encoder-Decoder Model (Seq2Seq Models)
  • Attention Models
  • Transformers
  • R-CNN and its variations:
    • Fast R-CNN
    • Faster R-CNN
    • Masked R-CNN
  • Graph Neural Networks
  • Deep Learning in Natural Language Processing (NLP)
  • Transfer Learning
  • Techniques to improve the Deep Learning model
  • Image, Text, and Audio Processing
  • Deep Learning Frameworks such as Keras, TensorFlow, PyTorch
  • Text Mining
  • Natural Language Processing
  • Natural Language Understanding
  • Natural Language Generation
  • Machine translation
  • Language detection & Translation (Google translator)
  • Text Recommendations
  • Chatbots/VoiceBots/Personal Assistant systems 
  • Vectorization
    • Countvectorizer
    • TF-IDF Vectorizer
  • N-Grams
  • Word Embeddings
    • Word2vec
    • Glove
  • Sentiment Analysis (Twitter feeds, reviews, feedback et al)
  • Intent Analysis (Analyzing customer reviews)
  • Email Classification (Google email classification – Primary-Social-Promotions-SPAM etc)
  • Text Summarization (Google News)
  • Fake news identification
  • Social Network Analysis (community detection)
  • Optical Character Recognition (OCR)
  • Text recommendations/suggestions (Email replies, autofilling, message replies)
  • Text Association Analysis
  • Topic Modeling
    • Latent Dirichlet Allocation (LDA)
    • Latent Semantic Allocation (LSA)
    • Non-negative Matrix-Factorization (NNMF)
  • Speech to Text
  • Automatic Text Generation
  • Information Retrieval
  • Information Extraction
  • Data Visualization and Interpretation
  • Power BI
  • Tableau
  • Introduction to ML Ops
  • Deployment of ML Model in the Cloud
  • Pipeline
  • Based On ANN,CNN,NLP projects    
Scroll to Top